Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age.

نویسندگان

  • Sean T Berthrong
  • Gervasio Piñeiro
  • Esteban G Jobbágy
  • Robert B Jackson
چکیده

Afforestation, the conversion of unforested lands to forests, is a tool for sequestering anthropogenic carbon dioxide into plant biomass. However, in addition to altering biomass, afforestation can have substantial effects on soil organic carbon (SOC) pools, some of which have much longer turnover times than plant biomass. An increasing body of evidence suggests that the effect of afforestation on SOC may depend on mean annual precipitation (MAP). The goal of this study was to test how labile and bulk pools of SOC and total soil nitrogen (TN) change with afforestation across a rainfall gradient of 600-1500 mm in the Rio de la Plata grasslands of Argentina and Uruguay. The sites were all former grasslands planted with Eucalyptus spp. Overall, we found that afforestation increased (up to 1012 kg C x ha(-1) x yr(-1)) or decreased (as much as 1294 kg C x ha(-1) x yr(-1)) SOC pools in this region and that these changes were significantly related to MAP. Drier sites gained, and wetter sites lost, SOC and TN (r2 = 0.59, P = 0.003; and r2 = 0.57, P = 0.004, respectively). Labile C and N in microbial biomass and extractable soil pools followed similar patterns to bulk SOC and TN. Interestingly, drier sites gained more SOC and TN as plantations aged, while losses reversed as plantations aged in wet sites, suggesting that plantation age in addition to precipitation is a critical driver of changes in soil organic matter with afforestation. This new evidence implies that longer intervals between harvests for plantations could improve SOC storage, ameliorating the negative trends found in humid sites. Our results suggest that the value of afforestation as a carbon sequestration tool should be considered in the context of precipitation and age of the forest stand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with m...

متن کامل

Soil Carbon and Nitrogen Changes following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China

Cropland afforestation has been widely found to increase soil organic carbon (SOC) and soil total nitrogen (STN); however, the magnitudes of SOC and STN accumulation and regulating factors are less studied in dry, marginal lands, and therein the interaction between soil carbon and nitrogen is not well understood. We examined the changes in SOC and STN in younger (5-9-year-old) and older (25-30-...

متن کامل

Effects of afforestation on water yield: a global synthesis with implications for policy

Carbon sequestration programs, including afforestation and reforestation, are gaining attention globally and will alter many ecosystem processes, including water yield. Some previous analyses have addressed deforestation and water yield, while the effects of afforestation on water yield have been considered for some regions. However, to our knowledge no systematic global analysis of the effects...

متن کامل

Soil properties, labile pools of soil organic carbon and their variations under broadleaf and coniferous plantation in Hyrcanian forest, northern Iran

Afforestation, as a tool to mitigate carbon emission is constrained by available land areain several countries, but Iran has the potential of plantation. In doing so, differences in soilstocks between tree species could give an indication of the effects of future managementchanges. Hence, a better understanding of tree species traits on soil properties is required topredict how changes in ecosy...

متن کامل

Carbon storage in eucalyptus and pine plantations in South Africa.

Carbon (C) is stored by plantation forests either when ecosystems with a low C density (such as tropical grasslands) are afforested or when timber is converted to semipermanent products. If the afforestation rate is relatively constant and the plantations are not harvested immediately upon reaching maturity, the amount of C stored in trees as a result of afforestation can be calculated by a sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ecological applications : a publication of the Ecological Society of America

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2012